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Abstract

Rapid fluctuations in the emission of solar bursts may have many

different origins e.g. the acceleration process can have a pulsating

structure, the propagation of energetic electrons and ions can be

interrupted from plasma instabilities and finally the electromagnetic

radiation produced by the interaction of electrostatic and electromagnetic

waves may have a pulsating behavior in time. In two separate studies

(Vlahos, Sharma, and Papadopoulos,1983; Vlahos and Rowland, 1984) we
analysed the contitions for rapid fluctuations in solar flare driven
emission.

1. Time evolution of a beam-plasma system

A possible interpretation of the solar hard X-ray bursts is that a

relativly large flux of non-thermal electrons accelerated near the energy

release site of a solar flare, stream along the magnetic field lines toward

the chromosphere. The interaction of the non-thermal electrons with the

ions in the upper chromosphere produces, via collisional Bremsstrahlung,

photons with energies from 20 Key to several Mev. The energetic electrons

are unstable to the growth of plasma waves. In the linear regime , plasma

waves with phase velocity ee/kb< vb will grow with a rate
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nb )2
_L = _;- (Vb/dV b we cos2F (1)

where v b is the beam velocity, we is the plasma frequency, rib, no are the

beam and ambient densities, dv b is the beam spread around the beam velocity

and _ the angle between the wave vector and the external magnetic field. As
LL_ --r.. 12

Lne beam J ....... waves reach u threshold value e.g. Wth/noT e -iv e VbJu_w. - / the

dispersion characteristics of the medium change dramatically and lead to
the formation of solitons. The long wavelength high frequency waves are
localised in space, producing soliton type formations in the wave energy
and cavities in the ion density. The local ion density is propotional to
the plasma wave energy (Papadopoulos, 1975) e.g.

6n 1

no =- [Wl/(2noTe) ]
(2)

1
where W1 is the energy density of the beam exited waves. The localization

in space of the plasma waves causes a fast transfer of wave energy out of
resonance with the beam electrons and into resonance with the low energy
tail of the Maxwellian distribution. The rate with which the waves are
transfered away from resonance with the beam is

• NL=(B/H) 1/2 {W_/n0Te}l/2 we (3)

for (W_ /noTe) > (Ve/Vb)2. The net result from the soliton formation is:

(1) the transfer of energy from the beam driven waves to non-resonant

plasma waves (W_) with low phase velocity and (2) the excitation of

ion-density fluctuations. As long as (W_/noTe)= 6n/n 0 the ion fluctuations

1
are undamped. The non-linear frequency shift, due to W2 , for the low

frequency waves is -kCs, so we obtain an essentially stationary non-linear

1
ion pertrubation. When W2 is absorbed by Landau damping on the electrons,

this non-linear frequency shift disapears, and the ion fluctuations are

converted to normal linear modes (ion acoustic waves) of the plasma and can
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then damped.

The evolution of a beam-plasma system then follows three stages: (I)

the linear growth of beam driven waves with rate _L" (2) Once the wave

energy passes a threshold value, discussed above, a fast transfer of plasma
waves to lower phase velocity waves occurs. (3) Ion density cavities are

(Ve/Vb)2. I thealso formed once (W /noTe) is above When W2 < Ws

non-resonant waves cannot support the cavitons and the "cavitons radiate"

ion density fluctuations. The ion density fluctuations scatter the high

frequency waves to lower phase velocityies with a rate

aNL= (Ws/noTe)(As/ADe)2we (4)

where As=lOA D and ADe is the electron Debye length. The time dependent

evolution of the beam driven waves can also be described by the folowing

phenomenological system of rate equations

_d_W_=dt_LW_ -_ NLW_, (W_-W_) - aNLW_,(Ws-WI) (5)

dW1 I 8(,__Wth ) _ULW1 _aNLW28(Ws_W21)dt = _NLW2
(6)

dWs 1 e(W__Wth)_ UlWsS(Ws_W_) (7)dt = 7NLW2

where uL is the damping of the Langmuir waves in the tail, u I is the

damping of the ion density fluctuations and 8 is a step function (see more
discussion on egs(5)-(7) in Vlahos and Rowland, 1984). We solved eqs(5)-(7)

numerically and the results are ploted in Fig.(1).

2. Stochastic three wave interaction

Electron beams, formed during the impulsive acceleration phase of a
flare, stream continuously toward the chromosphere. Since the magnetic
field increases slowly in the direction of propagation a fraction of the

beam electrons precipitate while the remainder became part of the stably
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Figure 1: The rate equations are solved numerically using nb/no=lO ,

Wl(t=O)=5*lO-5, W_(t=O)=Ws(t=O)=lO -5, Vb/Ve=lO. (a) The temporal

evolution of the resonant high frequency waves and the acoustic wave
(b) the temporal evolution of the non-resonant waves. The individual

pulse have a duration m ysec to msec, dependig on the beam strength.

trapped component. For a plasma with cyclotron frequency (_e) larger than

the plasma frequency (We) , the presence of the beam can amplify waves in

both , lower and upper hubrid brances. The beam exited electrostatic waves

are convectivly amplified and propagate toward the cutoff region where

their energy piles up in a narrow wave packet with bandwith _x_UH.

Coherent upconversion of the beam amplified electrostatic waves to

electromagnetic waves produce an intrinsically stochastic emission
component. For a coherent interaction we average the basic three wave
coupling equations over space, retaining however their dynamic character.

We thus have a zero-dimension but dynamic model. The energy input is steady
and represents the rate at which electrostatic waves convert into the

interaction volume. The three wave equations for the real amplitude(a;) and

phase are
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da 1

_-=Vlal-Ala2a3cos_

da 2

dt = "t2a2-Ala3alC°S'P

_3
= _3a3+A2ala2COSe

(8)

(9)

(10)
dt

d_

dt =-6_UII+(A2ala2/a3 -A lala3/a2 -A 1a2a3/al )sin_ (11)

where A1,A 2 are the coupling coefficients and _j are the linear growth (or

damping) of the wave.

The evolution of the electromagnetic wave is shown in Fig.(2).
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Figure 2: The time evolution of the electromagnetic wave resulting from the

dynamic interaction of two electrostatic waves near the cutoff region.
The individual pulses have a duration < lmsec. The dotted line
represents the response of an instrument with resolution >10 msec.
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